首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2142篇
  免费   94篇
  国内免费   43篇
测绘学   60篇
大气科学   147篇
地球物理   420篇
地质学   789篇
海洋学   171篇
天文学   501篇
综合类   10篇
自然地理   181篇
  2022年   10篇
  2021年   47篇
  2020年   43篇
  2019年   46篇
  2018年   58篇
  2017年   54篇
  2016年   68篇
  2015年   64篇
  2014年   66篇
  2013年   136篇
  2012年   83篇
  2011年   108篇
  2010年   106篇
  2009年   140篇
  2008年   111篇
  2007年   126篇
  2006年   108篇
  2005年   74篇
  2004年   100篇
  2003年   74篇
  2002年   72篇
  2001年   59篇
  2000年   45篇
  1999年   51篇
  1998年   36篇
  1997年   28篇
  1996年   16篇
  1995年   25篇
  1994年   26篇
  1993年   13篇
  1992年   19篇
  1991年   10篇
  1990年   13篇
  1989年   13篇
  1988年   10篇
  1987年   22篇
  1986年   12篇
  1985年   10篇
  1984年   14篇
  1983年   14篇
  1982年   17篇
  1981年   15篇
  1980年   16篇
  1979年   8篇
  1978年   8篇
  1977年   7篇
  1976年   9篇
  1975年   11篇
  1974年   12篇
  1973年   8篇
排序方式: 共有2279条查询结果,搜索用时 15 毫秒
21.
The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U–Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2–3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15–25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9–15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O detrital zircons; this recognition can aid provenance studies in complex metamorphic terranes where age determinations alone may not allow discrimination of coeval source rocks. Metamorphic zircon megacrysts have not been reported previously and appear to be associated with high-grade marble. Identification of high δ18O zircons can also aid geochronology studies that seek to date high-grade metamorphic events due to the ability to distinguish metamorphic from detrital zircons in marble.  相似文献   
22.
Sets of 20 soda ash glasses, 16 soda lime glasses and 23 wood ash glasses mainly from excavations in Europe (additional soda ash glasses from Egypt) were analysed on 61 chemical elements. Average SiO2 is about 62% in soda glasses and 50% in wood ash glasses. The three groups of glasses contain on average 13% Na2O, 18% Na2O and 13% K2O as fluxes to lower the melting temperature of quartz at their production. The starting materials beside quartz were halophytic plant ash for soda ash glass, trona (Na3H(CO3)2·2H2O) and lime (clamshells) for soda lime glass and beech ash for wood ash glass. Each of the three major glass types contains specific Rare Earth Element (REE) concentrations mainly contained in quartz and its intergrown minerals. 50 Paleozoic and Mesozoic sandstones from Central Europe represent the quartz composition. The REE pattern of these glasses apparently indicates major compositional stages of the Continental Earth's Crust. The boron to lithium and sodium to potassium ratios as in seawater suggest reactions of materials for soda glass with seawater. Negative Ce anomalies in the three glasses are caused by reactions of quartz with seawater.  相似文献   
23.
We have performed experiments to evaluate Au solubility in natural, water-saturated basaltic melts as a function of oxygen fugacity. Experiments were carried out at 1000 °C and 200 MPa, and oxygen fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer and FMQ + 4. All experiments were saturated with a metal-chloride aqueous solution loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The stable phase assemblage at FMQ + 4 consists of basalt melt, clinopyroxene, magnetite-spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., quenched melt) and their contained crystalline material were analyzed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt range from 4.8 μg g−1 to 0.64 μg g−1 at FMQ + 4, and 0.54 μg g−1 to 0.1 μg g−1 at FMQ. The measured solubility of Au in olivine and clinopyroxene was consistently below the LA-ICP-MS limit of detection (i.e., 0.1 μg g−1). These melt solubility data place important limitations on the dissolved Au content of water-saturated, Cl- and S-bearing basaltic liquids at geologically relevant fO2 values. The new data are compared to published, experimentally-determined values for Au solubility in dry and hydrous silicate liquids spanning the compositional range from basalt to rhyolite, and the effects of melt composition, oxygen fugacity, pressure and temperature are discussed.  相似文献   
24.
Intermediate models of the coupled tropical atmosphere?Cocean system have been used to illuminate the physics of interannual climate phenomenon such as El Ni?o Southern Oscillation (ENSO) in the tropical Pacific and to explore how the tropics might respond to a forcing such as changing insolation (Milankovitch) or atmospheric carbon dioxide. Importantly, most of the intermediate models are constructed as anomaly models: models that evolve on a prescribed climatological mean state, which is typically prescribed and done so on a rather ad hoc basis. Here we show how the observed climatological mean state fields [ocean currents and upwelling, sea surface temperature (SST) and atmospheric surface winds] can be incorporated into a linearized intermediate model of the tropical coupled atmosphere?Cocean system: called Linear Ocean?CAtmosphere Model (LOAM), it is a linearized version of the Zebiak and Cane model. With realistic, seasonally varying mean state fields, we find that the essential physics of the ENSO mode is very similar to that in the original model and to that in the observations and that the observed mean fields support an ENSO mode that is stable to perturbations. Thus, our results provide further evidence that ENSO is generated and maintained by stochastic (uncoupled) perturbations. The method that we have outlined can be used to assimilate any set of ocean and atmosphere climatological data into the linearized atmosphere?Cocean model. In a companion paper, we apply this same method to incorporate mean field output from two global climate models into the linearised model. We use the latter to diagnose the physics of the leading coupled mode (ENSO) that is supported by the climate models, and to illuminate why the structure and variance in the ENSO mode changes in the models when they are forced by early Holocene and Last Glacial Maximum boundary conditions.  相似文献   
25.
We applied DNA‐based faecal analysis to determine the diet of female Australian sea lions (n = 12) from two breeding colonies in South Australia. DNA dietary components of fish and cephalopods were amplified using the polymerase chain reaction and mitochondrial DNA primers targeting the short (~100 base pair) section of the 16S gene region. Prey diversity was determined by sequencing ~50 amplicons generated from clone libraries developed for each individual. Faecal DNA was also combined and cloned from multiple individuals at each colony and fish diversity determined. Diets varied between individuals and sites. Overall, DNA analysis identified a broad diversity of prey comprising 23 fish and five cephalopod taxa, including many species not previously described as prey of the Australian sea lion. Labridae (wrasse), Monacanthidae (leatherjackets) and Mullidae (goat fish) were important fish prey taxa. Commonly identified cephalopods were Octopodidae (octopus), Loliginidae (calamary squid) and Sepiidae (cuttlefish). Comparisons of fish prey diversity determined by pooling faecal DNA from several samples provided a reasonable but incomplete resemblance (55–71%) to the total fish diversity identified across individual diets at each site. Interpretation of diet based on the recovery of prey hard‐parts identified one cephalopod beak (Octopus sp.) and one fish otolith (Parapriacanthus elongatus). The present study highlights the value of DNA‐based analyses and their capabilities to enhance information of trophic interactions.  相似文献   
26.
27.
Understanding hydrological processes in wetlands may be complicated by management practices and complex groundwater/surface water interactions. This is especially true for wetlands underlain by permeable geology, such as chalk. In this study, the physically based, distributed model MIKE SHE is used to simulate hydrological processes at the Centre for Ecology and Hydrology River Lambourn Observatory, Boxford, Berkshire, UK. This comprises a 10‐ha lowland, chalk valley bottom, riparian wetland designated for its conservation value and scientific interest. Channel management and a compound geology exert important, but to date not completely understood, influences upon hydrological conditions. Model calibration and validation were based upon comparisons of observed and simulated groundwater heads and channel stages over an equally split 20‐month period. Model results are generally consistent with field observations and include short‐term responses to events as well as longer‐term seasonal trends. An intrinsic difficulty in representing compressible, anisotropic soils limited otherwise excellent performance in some areas. Hydrological processes in the wetland are dominated by the interaction between groundwater and surface water. Channel stage provides head boundaries for broad water levels across the wetland, whilst areas of groundwater upwelling control discrete head elevations. A relic surface drainage network confines flooding extents and routes seepage to the main channels. In‐channel macrophyte growth and its management have an acute effect on water levels and the proportional contribution of groundwater and surface water. The implications of model results for management of conservation species and their associated habitats are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
28.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   
29.
Unconsolidated mud clast breccia facies in the hominin-bearing (Homo naledi) Rising Star Cave, Cradle of Humankind, South Africa, are interpreted to have formed through a process termed sedimentary autobrecciation in this study. This process, by which most of the angular mud clast breccia deposits are thought to have formed autochthonously to para-autochthonously via a combination of erosion, desiccation, diagenesis and microbial alteration of laminated mud deposits, is thought to have taken place under relatively dry (i.e. non-flooded) conditions inside the cave. Subsequently, gravitational slumping and collapse was the dominant mechanism that produced the mud clast breccia deposits, which commonly accumulate into debris aprons. The mud clast breccia is typically associated with (micro) mammal fossils and is a common facies throughout the cave system, occurring in lithified and unlithified form. This facies has not been described from other cave localities in the Cradle of Humankind. Additionally, sedimentary autobrecciation took place during the deposition of some of the fossils within the Rising Star Cave, including the abundant Homo naledi skeletal remains found in the Dinaledi Subsystem. Reworking of the mud clast breccia deposits occurs in some chambers as they slump towards floor drains, resulting in the repositioning of fossils embedded in the breccias as evidenced by cross-cutting manganese staining lines on some Homo naledi fossil remains. The formation of the unlithified mud clast breccia deposits is a slow process, with first order formation rates estimated to be ca 8 × 10−4 mm year−1. The slow formation of the unlithified mud clast breccia facies sediments and lack of laminated mud facies within these deposits, indicates that conditions in the Dinaledi Chamber were probably stable and dry for at least the last ca 300 ka, meaning that this study excludes Homo naledi being actively transported by fluvial mechanisms during the time their remains entered the cave.  相似文献   
30.
The growth and dissolution behaviour of accessory phases (and especially those of geochronological interest) in metamorphosed pelites depends on, among others, the bulk composition, the prograde metamorphic evolution and the cooling path. Monazite and zircon are arguably the most commonly used geochronometers for dating felsic metamorphic rocks, yet crystal growth mechanisms as a function of rock composition, pressure and temperature are still incompletely understood. Ages of different growth zones in zircon and monazite in a garnet‐bearing anatectic metapelite from the Greater Himalayan Sequence in NW Bhutan were investigated via a combination of thermodynamic modelling, microtextural data and interpretation of trace‐element chemical ‘fingerprint’ indicators in order to link them to the metamorphic stage at which they crystallized. Differences in the trace‐element composition (HREE, Y, EuN/Eu*N) of different phases were used to track the growth/dissolution of major (e.g. plagioclase, garnet) and accessory phases (e.g. monazite, zircon, xenotime, allanite). Taken together, these data constrain multiple pressure–temperature–time (P–T–t) points from low temperature (<550 °C) to upper amphibolite facies (partial melting, >700 °C) conditions. The results suggest that the metapelite experienced a cryptic early metamorphic stage at c. 38 Ma at <550 °C, ≥0.85 GPa during which plagioclase was probably absent. This was followed by a prolonged high‐T, medium‐pressure (~600 °C, 0.55 GPa) evolution at 35–29 Ma during which the garnet grew, and subsequent partial melting at >690 °C and >18 Ma. Our data confirm that both geochronometers can crystallize independently at different times along the same P–T path and that neither monazite nor zircon necessarily provides timing constraints on ‘peak’ metamorphism. Therefore, collecting monazite and zircon ages as well as major and trace‐element data from major and accessory phases in the same sample is essential for reconstructing the most coherent metamorphic P–T–t evolution and thus for robustly constraining the rates and timescales of metamorphic cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号